It needs to get through to the homo sapiens community that all things living on this "Bioreactor Earth"
are a product of the synthesis of several main elements, the most important of which is carbon. Natural
products consumed by homo sapiens contain from 40% to 45% of carbon, and carbon content
represents 40% and 86% of products manufactured by humans from natural raw materials, i.e. from
fuels, starches, fats and proteins.
Careless or even slovenly disposal of hard coal, natural gas, oil, and products derived from them can
disturb the ecological balance of the Earth's natural environment.
Encouraging evidence of the potential for regulating photosynthesis processes by technological means,
which would allow us to effectively combat hunger, should help to calm the frenzied masses of the
homo sapiens, struck by the hysteria of the war against carbon dioxide. This is not the right policy to
fight global warming, of which, by the way, there is no real prospect, nor to deal with an incidental
climate crisis which is taking place.
Back in the third century BC, Eratosthenes of Cyrene established that our world, the planet
Earth, is a sphere. That discovery was made even before the start of our own era, which is said,
not very accurately, to count already 2019 years. Centuries have passed, but still not everyone
believes it to be true. Nowadays, scholars and seers whose names need not to be mentioned here
continue to harbour equally portentous doubts, namely that we are threatened by a climate crisis
or some other similarly grave affliction. Oblivious to the irrefutable evidence that our planet
undoubtedly resembles a sphere, that we know its weight, dimensions, area and volume, we
likewise find it hard to acknowledge that, for stable existence, which we lead mostly on the
surface of this sphere, we need energy. The Sun is the only source of life-giving energy for the
Earth.
On a clear day, we get 1.388J/cm2s of energy from the Sun, of which 43% on average is
absorbed by the Earth. The rest is reflected back in varying degrees by the surface of lands and
waters of the seas and oceans. The degree of reflection, called albedo, ranges from 75% on a
snow-covered field to just 7% for free water surface1. The albedo ratio also depends on the
incidence angle of sunrays on reflecting surfaces, i.e. generally on the geographical latitude as well
as on the colour of the surface and the cloud cover in the atmosphere. Depending on their
turbidity, waters of the seas and oceans may have a lower albedo than pure-clear waters. Turbidity
of sea and ocean waters, as well as that of flowing and standing surface waters, comes mainly from
the presence of microorganisms and of the mass of mineral particles smaller than 10-9m, and also
of colloidal structures with dimensions of 10-9-10-7m. Particles with a conventional size larger than
10-7m form suspensions, which usually tend to undergo sedimentation, i.e. they sink, under the
influence of gravity2. Due to the strong adsorption of energy, mainly by autotrophic organisms
populating this habitat, solar radiation energy is absorbed at a very high rate by the surface of the
seas and oceans. The mass of these organisms accounts for 90% of the mass of all living organisms
existing on our planet, with only 10% of them inhabiting the land surface3.
Along with the energy necessary for the biochemical process of photosynthesis, these
microorganisms, both water- and land-based, absorb carbon dioxide. For the existential comfort of
terrestrial microorganisms, another prerequisite is the availability of water in a quantity at least
equal to 40% of their mass, so that the photosynthesis process can continue without disturbance.
Where water is scarce, biochemical processes practically cease. Carbon dioxide, which is the basic
factor in the synthesis of all foodstuffs and the main component of the human body mass, can be
found in a dissolved state in clean water at 25oC in the amount of 0.44 mg/dm3.
Its low solubility is limited by the pH value (acidity or alkalinity of water-based solution) and low concentration in the
air. C02 is no longer soluble in water at an atmospheric concentration of 0.02% , due to its low
partial pressure. In drillings from glaciers dating back as far as the Neogene period in the Holocene
era, its concentration was almost constant, around 0.03%.
In unpolluted natural waters, carbon dioxide occurs as a bicarbonate ion with water pH
values in the range of 7-9, usually as calcium bicarbonate. In sea water, its concentration in the
form of an ion (HCO3-) can be in the order of 140 mg/dm3, and in river water -- 65 mg/dm3, 4.
Until the most recent decades of the Holocene age (i.e. the 20th century), the
concentration of C02 in the atmosphere remained at a level matching the requirement as
regulated by the photosynthesis process, correlating principally with the mass of autotrophic
microorganisms/producers living in the aquatic environment, with a slight contribution from
pollution generated by the homo sapiens (HS). Another participant in this process were
heterotrophs, which use photosynthesis products of autotrophs, or primary producers, to
synthesize their own photosynthesis products and accumulate carbon in wood. These processes
occur in green plants present on our planet's land surfaces. Green plants use solar energy directly,
but also consume its products. When energy flows are absent, e.g. during the night, they emit
proportional quantities of oxygen (O2) to the atmosphere, in the process of decomposition of the
stored mass of synthesis products.
Consequently, and contrary to widely-held belief, planting trees and then waiting for years
for their "salutary" contribution to C02 storage is of little benefit. Absorbed carbon accumulates
mainly in the tissues of woody branches and tree trunks, which play no part in biosynthesis. Their
carbon storage function is limited mainly to peak periods of their life activity. When leaves that are
shed seasonally by deciduous trees undergo decomposition with the help of destructants, they
emit significant amounts of C02 into the atmosphere. Therefore, in pursuing mass tree-planting
campaigns, we should be guided by the principle of rationality, as represented by the analysis of
costs and benefits. There are other plant organisms, including some trees, which generate less
secondary pollution of the environment. From the perspective of reducing C02 emissions, it is
more beneficial to plant evergreen trees and shrubs. The latter thrive in the climatic zones that
include the equator belt and the Earth's areas located in temperate and subtropical zones, found in
both the northern and the southern hemispheres, especially in regions with adequate water
supplies. This is something that we should be doing and we know in principle how to do it.
So let's not become too excited lamenting the clearing of forests. In their place, however,
we need to plant new ones. Some of the areas previously occupied by old-growth forests should
be planted with green industrial crops, which absorb C02 and produce hydrocarbons, proteins and
fats, which we currently lack to feed almost every ninth inhabitant of our planet.
How to balance the needs of Earth's inhabitants with the energy supplied by the Sun
The "space-bioreactor", that is our Earth, remains, to date, the only observable Celestial Body,
known to us in the surrounding Universe, which has a biosphere. Our biosphere is filled with water,
carbon dioxide, nitrogen, argon and oxygen, and biological life created on the basis of carbon,
teeming with plant and animal organisms. We owe the latter classification of biological life on
Earth to ourselves, the primates of the animal kingdom, the arrogantly self-described wise man -
the Homo Sapiens (HS). However, not every specimen of this species is worthy of that name.
Regrettably, at least half of us are irresponsible and mindless slobs who litter their own nest - the
Earth.
Currently, the HS representatives are the dominant species. Any day or month now, or
perhaps during the next year or so, we can expect that there will be already 8 billion of us (8 x 109).
This mass of bodies consisting of oxygen (65%), carbon (18%), hydrogen (10%), and the other
elements representing only 7% of that mass, owes its existence to the Sun's radiation energy. The
nutrition necessary to maintain their lives and regenerate their bodies, the HS obtain from a huge
mass of microorganisms, which are proficient users of the Sun's energy. These microorganisms
convert carbon dioxide C02 and water (H2O) into food mass under the action of sunrays in the
process of photosynthesis. Such nutrients are simple chemical compounds: carbohydrates (sugars),
hydrocarbons (fats), and proteins. Therefore, satisfying humans’ appetite for these products
requires rational monitoring of the amount of carbon in the biosphere, so that it reasonably
approximates carbon’s share in the mass of basic products obtainable from the biosphere.
Autotrophic organisms, that is primary autotrophs containing chlorophyll, as well as heterotrophs,
which are the first link in the chain of consumption of autotroph biosynthesis products, became
specialized producers of such nutrients. With carbon playing an irreplaceable role in this chain of
transformations in the form of C02, which is indispensable for biosynthesis to occur, we, the
earthlings, cannot turn to any additional sources of “carbon supply”, as neither solar wind, cosmic
radiation nor radiation of the Earth's core can provide us with it. Solar wind is a just mass of
elementary matter, with estimated volume of 4,150,000 tons per second, but with little carbon
content; consequently, only trace amounts of carbon reach the Earth's surface from this source. In
this predicament, it is up to us, the homo sapiens, to make sure that the quantity of carbon, in the
form of C02, and water in the biosphere is sufficient for our existence and reasonable
development. Absorption of solar energy, which is an indispensable component of biosynthesis
processes, depends on the water content in the Earth's subsurface, its temperature, as well as the
prevalence of microorganisms in it, whose quantities we must learn to control. When deserts are
provided with water, their albedo decreases from 40% to 25%, because this stimulates spores
containing chlorophyll, mostly autotrophs, to activity. It should also be remembered that
agricultural areas may, as an example, contain up to 100 million of water-craving microorganisms
in 1 cm3 of soil 5.
An approximate balance sheet for the "Bioreactor Earth"
As the literature says6, the Earth may receive energy on the order of 21·1024J per year, or perhaps
21·1018 MJ per year, of which 28.6% reach land areas and 71.4% -- the surface of seas and oceans.
The total average biochemical binding of carbon per year was estimated to be 139.2·109
tons7. This is absorbed by the aquatic environment of the oceans and seas, as well as by land areas. It is
equivalent to the biosynthesis of glucose (C6H12O6) at the level of 8.507·1016 of particle-grams
(gmoles).
The biosynthesis of that glucose mass corresponds to the consumption of solar energy by
autotrophs on the order of 6.816·1017MJ per year. The sun-derived energy which is used by these
microorganisms to produce basic nutrients is especially necessary for heterotrophs and their
primary consumers in long multi-phase feeding cycles. In this way, they also satisfy the energy
needs of the HS representatives. As a global population, the latter absorb the amount of energy
equal to 3.352·1015MJ per year. (This energy quantity takes into account their body mass and a diet
limited only to 1000 kcal per day. It may not be much, but more than a billion HS individuals
experience malnutrition.)
As is well known, in addition to consuming primary energy, to assure themselves of
comfortable existence, the HS process energy accumulated in natural sources, mainly in deposits
of coal, petroleum and natural gas. They extract, as well as process and store, energy from these
resources accumulated hundreds of millions of years ago. Some of this energy is emitted as C02
into the atmosphere, thus helping to trigger photosynthetic processes. This contributes to the
Earth’s overall energy stability and allows the pool of food resources to grow. However, missing in
this cycle of secondary energy transformations is the realisation of the need for deep recycling of
synthetically produced carbon-based products. Across the world dominated by homo sapiens,
these products keep piling up in mountains of trash. Foolish HS dump them also in seas and
oceans. Such waste can be “digested” by microorganisms, but this takes them a long time. In the
presence of water and oxygen, with the participation of specialized enzymes, the waste first
undergoes "fragmentation" and then is transformed into structures of nutrients. Six basic stages
can be distinguished in the cycle of transformations taking place in the natural environment, each
characterized by different speed of the process.8 At each stage of these transformations a specific
portion of energy is expended. As a result, the energy of the "Bioreactor Earth" is dispersed - that
is it is subject to entropy. This is balanced off by the inflow of solar energy. Solar energy can be
absorbed only through photosynthesis. However, when photosynthesis is not balance with the
demand for energy, the reactor may overheat, and this condition may become protracted. The
biochemical reactor also has a certain, high level of tolerance, as evidenced by a fairly rapid
response to changes in thermal conditions. An increase in excessive solar radiation causes a
simultaneous rise in ambient temperature, thus boosting the growth appetite of the living mass of
producer organisms. This process is not instantaneous, but it can become even explosive within a
time cycle, especially in shallow coastal waters and on land areas with sufficient moisture.
Assuming that only half of the solar energy mentioned in the literature cited earlier4 will be
used by autotrophs in the process of photosynthesis, the glucose mass equal to 1.3105·1016
gmoles can be expected to be produced. On the time scale of one year, such an increase and the
related absorption of solar energy should not disturb the thermal parameters of our planet's
climate. A contrary scenario, i.e. involving significant warming, could be expected only if Planet
Earth were unable to find a counterbalance to further C02 emissions from the burning of natural
fuels and from industrial activities in the absorption system of the carbon-storing mass of
autotrophic microorganisms and heterotrophic woody plants, which is not likely. For the warming
scenario to materialise, emissions would have to reach the level of 1.3978666·1013 kg C02, but this
would increase the C02 concentration in the Earth's atmosphere by only 30 nano% - and this is not
enough.
It needs to get through to the Homo Sapiens community that all things living on this
"Bioreactor Earth" are a product of the synthesis of several main elements, the most important of
which is carbon. Natural products consumed by HS contain from 40% to 45% of carbon, and carbon
content represents 40% and 86% of products manufactured by humans from natural raw materials,
i.e. from fuels, starches, fats and proteins.
Careless or even slovenly disposal of hard coal, natural gas, oil, and products derived from
them can disturb the ecological balance of the Earth's environment. Living on the surface of our
globe during the Holocene era, to keep ourselves warm during cold spells we have only used wood
and peat. Carbon dioxide and ash, which were waste by-products of that activity, helped to make
our lands and seas more alive by boosting photosynthesis processes. As a result, our bioreactor,
already then, kept making warming periods ever longer and cooling periods more moderate, which
thus have become less onerous. That is why the current catchphrases about protecting the climate
against warming, instead of ridiculous summons to the war against carbon dioxide, should be
calling for the general clean-up of the Earth. Foils, plastic waste of various types or laminates need
to be collected in designated places and prophylactically compressed. This will make it easier to
deposit and store them at pre-selected locations, e.g. in closed mine pits (backfilling), as a
potential coal reserve for the production of additional tons of food. Under no circumstances
should they be incinerated, except when it is considered necessary to replenish the earth's
reserves with an additional load of carbon dioxide.
Summary
The "Bioreactor Earth" - is a living planet, the only one in the system of planets orbiting the Sun,
and perhaps one of the few in the Universe's system of matter of stars and planets, to generate
forms of living matter on the basis of carbon compounds. During the solid phases of the Earth's
existence, it is up to the homo sapiens species to use it reasonably. It is their responsibility to
rationally employ the base of natural resources and solar energy in order to sustain biochemical
processes initiated by autotrophic microorganisms. The latter serve as the first link in the chain of
biochemical synthesis of organic compounds with the participation of chlorophyll. The input
substrates in this process of synthesis are carbon dioxide (C02) and water (H2O), and the primary
factor is the energy of the Sun in the form of energy quanta, which the homo sapiens will also
learn to control in the future. The process of photosynthesis takes place in the seas and oceans as
well as in all water reservoirs that are not yet optimally utilized, and also in the moist subsoil of
terrestrial lands. The woody plants cannot produce chlorophyll, save for their leaves and conifers,
but they are the main "accumulator" of carbon compounds and the energy they contain. Glucose
(C6H12O6) is the basic chemical compound for photosynthesis of autotrophic organisms. The
synthesis of one mole of glucose requires a dose of solar energy equal to 8012.2 kJ. The next step
in photosynthesis are heterotrophic processes involving planktonic microorganisms, which are the
consumers of autotrophic products. The keystone of the carbon cycle in the "Reactor Earth" is the
universal process of decomposition.
However, the characteristic feature of all organisms living in the aquatic environment,
including wet fields, meadows and forest ground, is the relentless pursuit of procreation which
guarantees survival and this will continue for millions of years to come.
Proliferation of organisms in the natural environment with the participation of water, CO2
and oxygen and in the presence of solar energy, when coupled with a simultaneous rise in
temperature, can lead to the climax manifested in blooming. At present, blooms are already
appearing in the coastal waters of oceans and seas, as well as in rivers and lakes, and for the time
being humans cannot control these processes. The rate of growth of their mass can vary from 3 to
18g/m2
per day. In controlled reactors with special water saturation with CO2, the growth rate of,
for example, algae mass is 439 g/m2
per day9.
At present, the production of the mass of planktonic microorganisms, which are both
producers and consumers of nutrients, has been fully technically mastered.
In biochemical reactors -- and it should be pointed out once again that our Earth, as a
planet, is just such a reactor -- in certain climate zones there are perfect conditions for growing
various acquatic "delicacies" for higher-level consumers, including humans. Up to 5 tonnes of
protein per hectare of area can be obtained from unicellular and algae cultivation10.
Encouraging evidence of the potential for regulating photosynthesis processes by means of
technology, which would allow us to effectively combat hunger, should help to calm the frenzied
masses of the homo sapiens, struck by the hysteria of the war against carbon dioxide. This is not
the right policy to fight global warming, of which, by the way, there is no real prospect, nor to deal
with an incidental climate crisis which is taking place.
Conclusions
1. The presence of carbon dioxide and water in the Earth's biosphere is the basic prerequisite
for sustaining biological life on our planet.
2. In the future, humanity must ensure, through global management, a balance between the
supply and requirement for carbon dioxide in the Earth's natural environment.
3. As long as the sun bestows energy on the Earth, we must not do anything on a global scale
that could impair photosynthesis.
4. The urgent current task for our planet is to eliminate pollution from carbon-containing
waste floating on the world's seas and oceans.
5. The most immediate key challenge for our world's community is to provide societies with
access to drinking water and to sustain agrarian and industrial processes at a level
compatible with their living comfort and technological progress.
1. Traité de Physique du Bâtiment, volume 1- Connaissance de Base, 1995, Edition CSTB, Paris (collective work).
2. Lebiedowski M., Modelling of Wastewater Treatment Processes, Publishing House of Bialystok University of Technology, Bialystok, 2011.
3. Lehninger A.L., Bioenergetics (in Polish), PWN Publishers, Warsaw 1978.
4. Kabat-Pandias A., Pandias H., Biochemistry of trace elements (in Polish), PWN Publishers, Warsaw. 1999.
5. Lebiedowski M., Parameters of biological elimination of dissolved contaminants (in Polish), Łódź University of Technology, Łódź, 1987.
6. Kabat-Pandias A., Pandias H., Biochemistry of trace elements (in Polish), PWN Publishers, Warsaw. 1999.
7. Lehninger A.L., Bioenergetics (in Polish), PWN Publishers, Warsaw 1978.
8. Lebiedowski M., Parameters of biological removal of dissolved contaminants (in Polish), Łódź University of Technology, Lódź, 1987.
9. Collective work, Microbiology of Waters (in Polish), PWN publishers, Warsaw 1973.
10. Kączkowski J., Fundamentals of Biochemistry (in Polish), PWT publishers, Warsaw 1996.